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Abstract
Argumentation has been an important topic in knowledge representation, reasoning and multi-agent
systems during the last twenty years. In this paper, we propose a new abstract framework where
arguments are associated with a strength, namely a quantitative information which is used to
determine whether an attack between arguments succeeds or not. Our Strength-based Argumentation
Framework (StrAF) combines ideas of Preference-based and Weighted Argumentation Frameworks
in an original way, which permits to define acceptability semantics sensitive to the existence of
accruals between arguments. The question of accruals arises in situations where several arguments
defending the same position (but from different points of view) against another argument are unable
to individually defeat this argument, but could do it collectively if they combine their strengths.
We investigate some of the theoretical and computational properties of our new framework and
semantics, and present a reasoning algorithm that is based on a translation of the problem into
pseudo-boolean constraint satisfaction. This paper proposes an intuitive framework which allows
strength compensations in an argumentation context where attacks may not succeed, completed
by an approach which detects accruals throughout the reasoning process without requiring the
elicitation of all compensatory combinations of arguments as an input.
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Introduction

Argumentation has been a main research topic in artificial intelligence for the last twenty years,
with applications in various domains such as decision making [4], automated negotiation [33],
reasoning with inconsistent knowledge [13], legal reasoning [11], and multi-agent systems [54].
A lot of works have been proposed, mainly based on the influential argumentation framework
(AF) of Dung [35]. An AF is characterized by a set of abstract entities called arguments and
an attack relation between arguments. A series of semantics have been defined to determine
which arguments are acceptable, usually by computing sets of arguments called extensions
that represent arguments that are compatible with each other [7]. Besides situations where
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arguments are reasons for believing some claims, AFs allow to model different situations
where conflicts arise between pieces of information, and to obtain some valuable conclusions.

Reasoning with such an AF supposes that there is no ambiguity about the nature of
conflicts and how to resolve them. However, and even when the nature of conflicts is certain,
different agents may apply contrasting policies to resolve these conflicts, depending on the
relative priorities they associate with arguments. These relative priorities may be represented
as a relation of preference between arguments [3], or by a relation of preference between the
values attached to arguments [10]. In these works, the reasoning process is achieved in two
steps: first a defeat relation is defined as the combination of the initial attack relation and
the preference relation. Then, an extension-based semantics of Dung is applied on the graph
obtained from the set of arguments combined with the resulting defeat relation. However,
none of these frameworks allows to finely compare arguments with respect to a quantitative
strength. Intuitively speaking, considering a strength-based framework allows to induce
priorities among arguments by merely associating a weight to each argument, and specially
does not require to examine each possible pairs of arguments.

Assigning a quantitative information to arguments has been considered in different
contexts. First, [15] associates arguments with a numerical value that represents "fuzziness,
probability or a preference in general"; the extensions given by Dung’s semantics are then
refined depending on the weights of the arguments that belong to them. Then, a different
approach considers arguments mapped to a quantitative strength in another context: instead
of defining arguments status through the notion of extension, rankings or graduations of
arguments can be defined by analyzing the arguments’ intrinsic strength and the attack
relation between arguments [2]. Contrary to preference-based argumentation, these weighted
argumentation frameworks defined in [15, 2] do not consider a notion of defeat in the reasoning
process. Moreover, none of the options presented above permits to consider collective attacks
[57], and especially accrual of arguments.

The idea of accruals, i.e. arguments that cannot on their own defeat their target but
together can succeed, has been initially studied in the literature of philosophy. While, at
first, some doubts have been expressed about the meaning of arguments accrual [60, 59],
more recently assumptions under which accruals of arguments make sense have been pointed
out [56]. However the question of whether arguments should accrue or not is out of the
scope of this paper. Indeed, this discussion may be decisive when considering arguments as
reasons for supporting a claim, but we do not restrict our study to such applications and opt
instead for a general view of argumentation as a formal tool to deal with conflicting pieces of
information. In addition and more specifically, the question of accruals of reasons has been
addressed in the AI literature (see [66, 62, 57] for examples). Although these studies differ
from this paper since they settle in a rule-based argumentation context, corresponding ap-
proaches furthermore require to express explicitly a priori all sets of accruals to take them into
account throughout the reasoning process. To the best of our knowledge, the question of how
accruals can be detected during the reasoning process has not been addressed in the literature.

The aim of this paper is to study this question. More precisely, we propose an approach
which:

allows strength compensations in an argumentation context where attacks may not
succeed;
detects accruals of arguments during the reasoning process without requiring their explicit
elicitation in the model as an input.

To this purpose, we define the Strength-based Argumentation Framework which combines in
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an original way the quantitative strength expressed in weighted argumentation frameworks
on one hand, and the notion of defeat relation introduced in the contexts of preference-based
and value-based argumentation on another hand. Then, we generalize the notion of defeat to
define a notion of collective defeat. In the following, we use the term of accrual to identify a
set of arguments that attack a same target. While arguments in this set might not be able
to individually defeat their common target, they could nevertheless achieve the defeat by
combining their strength. The representation proposed in this paper allows to compute the
strength of an existing accrual, and consequently to decide about the outcome of a conflict
between an accrual and an individual argument (or between two accruals) by applying a
slightly adapted version of the Dung acceptability semantics.

The paper is organized as follows. Section 1 recalls the basic notions of abstract argument-
ation. In Section 2, we propose an intuitive framework for representing strength of arguments,
and we define formally a defeat-based semantics for our Strength-based Argumentation
Frameworks (StrAFs). Then Section 3 introduces accrual of arguments, and provides some
theoretical properties of these new semantics that are sensitive to this notion of accrual and
produce extensions that are usually ignored by existing semantics. In Section 4, we study
the complexity of the reasoning processes for first some particular sub-classes of StrAFs, and
then for the general case. We show that, despite this reasoning mechanism may appear to be
theoretically intractable, we can rely on the power of Pseudo-Boolean constraints solvers
to compute extensions produced by our framework. Section 5 discusses in details existing
related work. Finally, Section 6 concludes the paper and describes some tracks for future
research.

1 Preliminaries

Most of the studies addressed to the literature of argumentation for the last twenty years have
been inspired by the work of [35]. This section presents the basics of abstract argumentation
frameworks.

An argumentation framework (AF), as introduced by Dung in [35], is a pair 〈A,R〉, where
A is a set of arguments, and R ⊆ A×A is an attack relation. The relation a attacks b, or b
is attacked by a, is denoted by (a, b) ∈ R. We focus on finite argumentation frameworks, i.e.
AFs such that A is a finite set.

In [35], different acceptability semantics have been introduced. These are based on two
basic concepts, defence and conflict-freeness, defined as follows:

I Definition 1. (Defence/Conflict-freeness) Let AF = 〈A,R〉 be an argumentation system.
Let S ⊆ A.

S is conflict-free if and only if @ a, b ∈ S s.t (a, b) ∈ R.
S defends a ∈ A if and only if ∀ b ∈ A, if (b, a) ∈ R, then ∃c ∈ S such that (c, b) ∈ R.

The set of all conflict-free sets of AF is denoted cf(AF ).

The basic idea behind these semantics is the following: for a rational agent, an argument
a is acceptable if he can defend a against all attacks. All the arguments acceptable for
a rational agent will be gathered in a so-called extension. An extension must satisfy a
consistency requirement and must defend all its elements.

I Definition 2. (Acceptability semantics) Let AF = 〈A,R〉 be an AF and S ∈ cf(AF ).
S is an admissible set if and only if S defends any element in S.
S is a preferred extension if and only if S is a ⊆-maximal admissible set.
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S is a stable extension if and only if it is a conflict free set that defeats any argument in
A \ S.

The sets of admissible, preferred and stable extensions are respectively denoted by ad(AF ),
pr(AF ) and st(AF ).

We show that, besides the natural application of AFs to "real argumentation" (i.e. debates
based on the exchange of arguments, where each argument is a reason for supporting some
claim), Dung’s AFs can be used to model reasoning problems in presence of conflicting
information.

I Example 3. John is a gardener, he has several options for working on the next day: he
can maintain the garden of different houses (A, B, C D, E and F ), but there are different
constraints:

He can work at house A between 3:00 p.m. and 5:00 p.m.;
He can work at house B between 4:00 p.m. and 7:00 p.m.;
He can work at house C between 8:00 a.m. and 10:00 a.m.;
He can work at house D between 9:00 a.m. and 12:00 a.m;
He can work at house E between 12:00 p.m. and 2:00 p.m;
He can work at house F between 1:00 p.m. and 3:00 p.m;

Because of schedule overlapping, houses A and B cannot both be selected by John, and
similarly for houses C and D on the one hand, and E and F on the other hand. This
situation is represented by AFjohn given at Figure 1a, where argument X is accepted if John
decides to maintain the garden of house X. Now, if the owner of house C tells John that,
finally, he cannot come between 8:00 a.m. and 10:00 a.m., but rather between 5:00 p.m. and
7:00 p.m., we obtain the situation described by AF 2

john (Figure 1b).

A B C D

E F

(a) AFjohn

A B C D

E F

(b) AF 2
john

Figure 1 Both Versions of John’s Garden Situation

The extensions of AFjohn and AF 2
john for the different aforementioned semantics are

given at Table 1. All these sets of extensions can represent reasonable choices of working
activities for John.

Notice that cf(AFjohn) = ad(AFjohn) and pr(AFjohn) = st(AFjohn) (and similarly for
AF 2

john). This comes from the fact that these AFs are symmetric [28]. This is not the case in
general, but it is well-known that ∀AF , st(AF ) ⊆ pr(AF ) ⊆ ad(AF ) ⊆ cf(AF ). See [35, 7]
for more details about the extension-based semantics.

2 Strength-based Argumentation Frameworks

2.1 Representing Strength in Abstract Argumentation
We have described in the introduction some intuitions on the meaning of the numerical
strength associated with arguments. While [15] mentions "fuzziness, probability or a pref-
erence in general", or a notion of trust about the arguments, [2] associates the weights
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σ σ(AFjohn)

cf, ad

∅, {A}, {B}, {C}, {D}, {E}, {F}, {A,C}, {A,D}, {A,E}, {A,F},
{B,C}, {B,D}, {B,E}, {B,F}, {C,E}, {C,F}, {D,E}, {D,F}

{A,C,E}, {A,C, F}, {A,D,E}, {A,D,F},
{B,C,E}, {B,C, F}, {B,D,E}, {B,D,F}

pr, st {A,C,E}, {A,C, F}, {A,D,E}, {A,D,F},
{B,C,E}, {B,C, F}, {B,D,E}, {B,D,F}

σ σ(AF 2
john)

cf, ad

∅, {A}, {B}, {C}, {D}, {E}, {F}, {A,E}, {B,E}, {C,E}, {D,E},
{A,F}, {B,F}, {C,F}, {D,F}, {A,C}, {A,D}, {B,D}, {C,D},
{A,C,E}, {A,D,E}, {B,D,E}, {C,D,E}, {A,C, F}, {A,D,F},
{B,D,F}, {C,D, F}, {A,C,D}, {A,C,D,E}, {A,C,D, F}

pr, st {A,C,D,E}, {A,C,D, F}, {B,D,E}, {B,D,F}
Table 1 Extensions of AFjohn and AF 2

john

to an intrinsic strength, that represents votes given by users [48], a certainty degree of
arguments premises [12] or trustworthiness of the source of information [32]. A similar
intuitive explanation is given in [55, 61] for weights associated with arguments, and in [37]
for weights associated with attacks.

Game theory techniques have also been borrowed to determine what is the strength of an
argument depending on the structure of the argumentation graph [53]. While this approach
gives a concrete meaning to the strength of arguments, here the strength is the output of
the process, in the spirit of gradual semantics [24, 8]. On the contrary, we want to have the
strength as input of our reasoning process.

Concrete applications of argumentation frameworks with strength of arguments have been
studied recently. Quantitative Argumentation Debates (QuAD frameworks) [9] associate
arguments to a numerical strength (called base score), and their gradual semantics define
a degree of acceptance for each argument. A variant of QuAD frameworks [64] has been
used to give a novel method for opinion polling, with arguments base scores corresponding
to users votes.

Quantitative Bipolar Argumentation Frameworks (QBAFs) [8] are a general abstract
argumentation framework where arguments are related by both attacks and supports [25], and
they are attached with a base score. Again, the semantics of these frameworks yields a degree
of acceptance for each argument. In [27], QBAFs are used to aggregate reviews of movies
from Internet database, in particular the notes given on the famous website RottenTomatoes
are used as the base score of arguments.

An argumentation framework for persuasion is defined in [65], where arguments are
associated with integer weights. However, these weights can be interpreted as the arguments
weakness instead of the arguments strength, since they represent the cost of the action
supported by the argument. Thus, the higher is the weight, the weaker is the argument.

In our running example, we show how strengths of arguments can be used to represent
the utility for the agent that some arguments belong to the extensions (for instance, the
money earned when performing some task). For a matter of simplicity, we will use natural
numbers for modelling the strength of arguments in all our definitions and examples, although
our approach can be extended with positive real numbers. However, the behaviour of our
accrual-sensitive semantics may not be preserved in some specific cases, that are discussed in
Section 3.1.
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2.2 Formal Definition of StrAFs
Let us now formally introduce the Strength-based Argumentation Framework. Intuitively
speaking, a StrAF is an argumentation framework where each argument is associated with a
weight (here a non-negative integer) which represents its strength:

IDefinition 4. (Strength-based Argumentation Framework) A Strength-based Argumentation
Framework (StrAF) is a triple 〈A,R,S〉 where A and R are respectively arguments and
attacks, and S : A → N is a strength function.

In our framework, the higher is the weight, the stronger is the argument this weight is
associated with. Let us illustrate this representation with the following example:

I Example 5. Let us continue Example 3. Depending of the size of the garden, John’s salary
for these works is not the same: houses A, B, C, D, E and F are worth respectively 40 Euros,
60 Euros, 40 Euros, 80 Euros, 40 Euros and 60 Euros. For each argument, the salary that
John gets corresponds to the strength of the argument. So, from AFjohn and AF 2

john, we can
define StrAFs StrAF john = 〈Ajohn,Rjohn,Sjohn〉 and StrAF2

john = 〈Ajohn,R2
john,Sjohn〉

described at Figure 2, where S(A) = S(C) = S(E) = 40, S(B) = S(F ) = 60 and S(D) = 80.
This means that an argument X is stronger than an argument Y if John earns more money
when maintaining the garden of house X rather than house Y .

A

40
B

60
C

40
D

80

E

40
F

60

(a) StrAF john

A

40
B

60
C

40
D

80

E

40
F

60

(b) StrAF2
john

Figure 2 Both Versions of John’s Garden Situation

Now, we adapt Dung-style semantics to StrAFs. To do so, we borrow the notion of defeat
relation from Preference-based AFs and Value-based AFs [3, 10].

I Definition 6. (Defeat Relation and Extension Semantics) Given StrAF = 〈A,R,S〉 a
StrAF, the defeat relation Def is defined by Def = {(a, b) ∈ R | S(b) 6> S(a)}.

Extension-based semantics of StrAF can be defined by considering the extensions of the
classical AF DefAF = 〈A,Def〉, i.e. σ(StrAF) = σ(DefAF) for σ ∈ {cf, ad,pr, st}.1

This definition mimics the definition of Preference-based AFs, except that here the notion
of preference is expressed through a quantitative measure. A similar notion can be found in
[16] where the concept of defence is refined by taking advantage of weights associated with
attack relations.

I Example 7. We continue Example 5. For both StrAFjohn and StrAF2
john, we describe

below the graphs corresponding to the defeat relation.
In the case of DefAF john (Figure 3a), we observe that using the defeat relation leads to

an intuitive result: for any semantics σ ∈ {ad,pr, st} as introduced in Definition 2, the single

1 Of course, the same mechanism can be applied to other semantics that are not considered in this paper.
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A

40
B

60
C

40
D

80

E

40
F

60

(a) DefAF john

A

40
B

60
C

40
D

80

E

40
F

60

(b) DefAF2
john

Figure 3 Defeat Graphs for John’s Garden Situation

extension is {B,D,F}, which is the best option for John (since he will earn 200 Euros).
However, in the second situation depicted at Figure 3b, any semantics σ ∈ {ad,pr, st}
gives σ(AF2

john) = {B,D,F}; this option is worth 200 Euros and is not optimal (indeed
{A,C,D, F} is an extension of AF 2

john, and is worth 220 Euros).

These defeat-based semantics are relevant when the strength associated with an argument
is individual and independent from other arguments, likewise the behavior of Preference-based
AFs. In our case, the semantics may produce an extension which is not the most desirable
outcome, like it is the case with DefAF2

john. This is why we propose to define semantics
sensitive to the notion of accrual of arguments.

3 Accrual of Arguments

Recent works have tackled the question of "quality versus quantity": is it worse for an
argument to be attacked by only one strong attacker, or to be attacked by plenty of quite
weak attackers? In the context of gradual semantics, this question is materialized by the
principles of Quality Precedence and Cardinality Precedence. A Compensation principle is
also stated to describe situations where several weak arguments have the same effect on their
target as fewer strong arguments [1, 20, 2]. Although the context is not the same (since we
consider extension-based semantics), a similar intuition leads to our definition of accruals:
several arguments may be individually too weak to defeat their target, but their collective
attack may be strong enough to compensate or even exceed the target’s strength.

3.1 StrAFs with Accrual
In this paper, we assume that weights associated with arguments are commensurable. Roughly
speaking, this means that these weights are comparable from an argument to another, and
aggregating them (with e.g. a Sum-based operation) makes sense. This kind of assumptions
suits well situations where, for instance, weights associated with arguments are provided
by an expert or a group of experts sharing a same representation scale, or are regarded as
rewards granted for the acceptance of some arguments. An example of the latter is provided
by our running example.

Let us first formally define the notion of accrual of arguments:

I Definition 8. Let StrAF = 〈A,R,S〉 be a StrAF. A set of arguments κ ⊆ A is called
accrual if and only if ∃c ∈ A such that ∀ a ∈ κ, (a, c) ∈ R. Moreover, we say that κ is an
accrual that attacks argument c.

Intuitively, an accrual is a set of arguments such that there exists an argument which is
attacked by all arguments in this set. Let us illustrate this notion with our running example:
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I Example 9. In StrAF2
john describing John’s situation (see Example 5), there is (for

instance) an accrual κ = {A,C} attacking the argument B.

In the following, we choose to opt for a pessimistic view of attacking an accrual. An
accrual is said to be attacked by an argument if and only if at least one of its arguments
is attacked. Then, several definitions of an accrual attacking another accrual are possible.
In what follows, we choose to focus on the following one, which corresponds again to the
pessimistic case: an accrual κ attacks an accrual κ′ if and only if there exists an argument in
κ′ such that all arguments of κ attack this argument. Formally:

I Definition 10. Let StrAF = 〈A,R,S〉 be a StrAF, and κ ⊆ A, κ′ ⊆ A two accruals. Then,
κ attacks κ′ if and only if ∃a ∈ κ′ such that κ attacks a.

We then define the collective strength associated with an accrual κ, denoted by coval(κ),
as the combination of values associated with arguments. Formally :

I Definition 11. Let StrAF = 〈A,R,S〉 be a StrAF and κ = {a1, ..., an} ⊆ A be an accrual.
Then the collective strength associated with κ is:

coval(κ) = coval(S(a1), . . . ,S(an))

where coval is an aggregation operator, i.e. a mapping from a vector of integers to an integer
that satisfies:
(non-decreasingness) if xi ≥ x′i, then coval(x1, . . . , xi, . . . , xn) ≥ coval(x1, . . . , x

′
i, . . . , xn);

(minimality) coval(x1, . . . , xn) = 0 if and only if x1 = · · · = xn = 0;
(identity) coval(x) = x;
(accrual) coval(x1, . . . , xn) ≤ coval(x1, . . . , xn, y).

These properties are quite natural for defining the strength of an accrual. Non-decreasingness
means that, if a 6∈ κ and b 6∈ κ, then the accrual κ ∪ {a} is stronger than the accrual κ ∪ {b}
when a is stronger than b. Minimality states that the accumulation of arguments "without"
strength (i.e. S(ai) = 0) does not create a collective strength from the void, and that non-null
arguments cannot cancel each other’s strength when they are taken together. Identity ensures
that the "collective" strength of a singleton is exactly the intrinsic strength of the argument
in this singleton. These properties are used for defining aggregation operators with other
purposes, like defining extensions in AFs with weighted attacks [30]; they correspond to the
basic properties of semirings [14, 16]. Finally, we consider the Accrual property: any set of
arguments is at least as strong as all its subsets.

The coval operator may be a classical aggregation function like the sum
∑

, the maximum
max or the weighted sum. Conversely, the product Π does not satisfy the minimality property.
Furthermore, one can notice that if we extend our approach to positive real numbers for
representing the strength, then the product Π operator does not satisfy the accrual properties
if some values belong to the interval [0, 1]. Nevertheless, all the properties remain satisfied
by Π if only natural or real numbers greater or equal to 1 are allowed.

To accommodate the notion of accrual we extend the semantics of StrAFs to take collective
defeat as follows.

We say that an argument a is collectively defeated by an accrual κ if and only if the
collective strength associated with κ is greater or equal to the value associated with a.

I Definition 12. Let StrAF = 〈A,R,S〉 be a StrAF, a ∈ A, and coval an aggregation
operator. Then, an accrual κ defeats a with respect to coval, denoted by κ�coval a, if and
only if
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κ ⊆ A is an accrual that attacks a;
coval(κ) ≥ S(a).

If coval is clear from the context, we use κ� a instead of κ�coval a.

We can introduce the notion of an accrual that defeats another accrual as follows:

I Definition 13. Let StrAF = 〈A,R,S〉 be a StrAF, coval an aggregation operator and
κ ⊆ A, κ′ ⊆ A two accruals. Then κ defeats κ′, denoted by κ� κ′, if and only if there exists
a ∈ κ′ such that κ� a.

Roughly speaking, an accrual defeats another accrual if the first accrual induces a defeat
against at least one argument of the second accrual.

In [16], the strength of an attack from a set S to a set S′ of arguments is defined as
the aggregation of strengths associated with all the attacks from any argument in S to any
argument in S′. While this may look similar to defeats between accruals, these are actually
different concepts. Indeed, since [16] do not associate strength with arguments, but with
attacks, there is no comparison between strength associated respectively with S and S′.
Moreover, in our approach, defeating any argument of an accrual is enough to consider the
whole accrual as defeated. Nevertheless, one can notice that a subset of this defeated accrual
can still be an undefeated accrual.

Let us illustrate the notion of collective attacks with our running example.

I Example 14. We continue Example 5. The natural aggregation operator here is coval =
∑

,
since the strength of an accrual is the money earned by John for maintaining several gardens
(corresponding to the arguments in the accrual). We observe that, in StrAF2

john, the accruals
κ1 = {B} and κ2 = {A,C} defeat each other. Indeed, coval(κ1) = S(B) = 60 ≥ S(A), while
coval(κ2) = S(A) + S(C) = 80 ≥ S(B).

The following example illustrates our approach in a non-symmetrical abstract argumenta-
tion context.

A1

x1

A2

x2

A4

x4

A5

x5

A3

x3

Figure 4 The StrAF that describes the situation of Joe and Jack

I Example 15. Let us consider the example provided in [57], composed of the following
abstract arguments:

A1: "Joe does not like Jack";
A2: "There is a nail in Jack’s antique coffee table";
A3: "Joe hammered a nail into Jack’s antique coffee table";
A4: "Joe plays golf, so Joe has full use of his arms";
A5: "Joe has no arms, so Joe cannot use a hammer, so Joe did not hammer a nail into
Jack’s antique coffee table".
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As examples of attacks, one can on a first hand notice that the argument A5 directly attacks
(and thus defeats) the argument A3, whereas arguments A3 and A4 directly attack (and also
defeat) the argument A5.
On another hand, authors in [57] discuss that arguments A1 and A2 attack the argument A5
since they can provide the conclusion that Joe has hammered a nail into Jack’s antique coffee
table, but cannot separately defeat it. However, when considered together, A1 and A2 may
constitute a stronger argument that defeats A5. These examples of attacks are illustrated by
Figure 4.
In our framework, let xi be the strength associated with the argument Ai, for i ∈ {1, . . . , 5}.
Let us assume that x3 = x5 (since A3 and A5 defeat each other), and x4 ≥ x5 (since A4
defeat A5). Several cases are then possible:

either strengths associated with arguments are such that either x1 ≥ x5 or x2 ≥ x5:
in this case, either the argument A1 or the argument A2 is considered solid enough to
individually defeat the argument A5;
either strengths associated with arguments are such that x1 < x5, x2 < x5 and x1 + x2 ≥
x5: in this case arguments A1 and A2 are too weak to defeat individually argument A5
but form an accrual to collectively defeat it;
or finally strengths associated with arguments are such that x1 < x5, x2 < x5 and
x1 + x2 < x5: in this case arguments A1 and A2 cannot defeat A5 neither individually
nor collectively.

Roughly speaking, according to the importance one chooses to attach to these arguments
and thus depending on the strengths associated with arguments A1, A2 and A5, A1 and A2
can individually or collectively defeat A5 or not.

3.2 Extension-based Semantics for StrAFS
In [35], different acceptability semantics have been introduced for computing the status of
arguments. These are based on two basic concepts, defence and conflict-freeness, which can
be adapted to the context of accruals.

The notion of conflict-freeness can be defined into two different senses, the strong and
the weak conflict-freeness.

I Definition 16. (Defence/Conflict-freeness) Let StrAF = 〈A,R,S〉 be a StrAF, coval an
aggregation operator, and S ⊆ A.

S is strongly conflict-free if and only if @a, b ∈ S such that (a, b) ∈ R.
S is weakly conflict-free if and only if there are no accruals κ1 ⊆ S and κ2 ⊆ S such that
κ1 �coval κ2.
S defends an element a ∈ A if and only if for all accruals κ1 ⊆ A, if κ1 �coval a, then
there exists an accrual κ2 ⊆ S such that κ2 �coval κ1.

Depending on the notion of conflict-freeness that is applied, two versions of acceptability
semantics are derived, that are defined formally below.

I Definition 17. (Acceptability semantics) Let StrAF = 〈A,R,S〉 be a StrAF, coval an
aggregation operator, and S a strong (respectively weak) conflict free set of arguments.

S is a strong (respectively weak) admissible set if and only if S defends all elements of
S.
S is a strong (respectively weak) preferred extension if and only if S is a ⊆-maximal
strong (respectively weak) admissible set.
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S is a strong (respectively weak) stable extension if and only if for each argument
a ∈ A\S, there is an accrual κ ⊆ S such that κ� a.

For any semantics σ ∈ {cf, ad,pr, st}, the set of strong (respectively weak) σ exten-
sion of StrAF = 〈A,R,S〉 with respect to coval is denoted by σcoval

S (StrAF) (respectively
σcoval

W (StrAF)). We drop coval from the notations when it is clear from the context.
It is easy to see that a strong extension is a weak extension as well, since the absence of

attacks in a set S (i.e. strong conflict-freeness) straightforwardly implies the absence of accrual
in S defeating elements of S (i.e. weak conflict-freeness). Therefore σS(StrAF) ⊆ σW (StrAF)
for any semantics σ.

We also remark a relation between weak semantics of StrAFs and semantics of AFs with
collective attacks [57]. Indeed, if κ� a holds in a StrAF, we can define an AF with collective
attacks where the set of arguments κ attacks a (according to the notion of attacks defined in
[57]). Thus, weak conflict-freeness (and the weak semantics based on weak conflict-freeness)
coincide with the conflict-freeness and semantics for AFs with collective attacks. However,
we notice that StrAFs allow a more modular representation of argument accrual, since they
are only based on individual attacks and arguments strengths, and they do not need to be
explicitly defined a priori.

We show that the usual relationship between semantics also holds for StrAFs.

I Proposition 18. (Semantics Inclusion) Let StrAF = 〈A,R,S〉 be a StrAF and coval an
aggregation operator. For X ∈ {S,W}, stX(StrAF) ⊆ prX(StrAF) ⊆ adX(StrAF).

Proof. The fact that every strong (respectively weak) preferred extension is a strong (re-
spectively weak) admissible extension is straightforward from the definition.

Let E ⊆ A be a strong (respectively weak) stable extension of StrAF = 〈A,R,S〉 with
respect to coval, i.e. ∀a ∈ A \ S, there is an accrual κ ⊆ E such that κ� a.

First we prove that E is a strong (respectively weak) admissible extension. Let κ ⊆ A be
an accrual such that κ� a, with a ∈ E. There are two cases.
Case 1 κ ⊆ E implies that E is neither strongly nor weakly conflict-free, this is a contradic-

tion.
Case 2 κ 6⊆ E implies that ∃b ∈ κ \ E, and since E is a strong (respectively weak) stable

extension, E � b holds. Thus E � κ, and we conclude that E is a strong (respectively
weak) admissible extension.

Now we prove that E is a strong (respectively weak) preferred extension. Using reductio
ad absurdum, we suppose that E is not a strong (respectively weak) preferred extension, this
means that ∃E′ ⊆ A a strong (respectively weak) admissible extension such that E ⊂ E′.
So ∃a ∈ E′ \ E. We have previously established that ∃κ ⊆ E ⊂ E′ is such that κ� a, so E′
is not weakly conflict-free, and therefore not strongly conflict-free. This is a contradiction
with the fact that E′ is a strong (respectively weak) admissible extension, and thus E is a
⊆-maximal strong (respectively weak) admissible extension, i.e. a strong (respectively weak)
preferred extension. J

I Example 19. Now we give the strong stable extensions of StrAF john and StrAF2
john,

with coval =
∑

. It is easy to see that stΣ
S (StrAF john) = {{B,D,F}} since B, D and F

respectively defeat A, C and E; this is the same result given by the "classical" defeat-based
stable semantics (see Example 7), and it is the optimal solution for John. In the case
of the second StrAF, we obtain stΣ

S (StrAF2
john) = {{A,C,D, F}, {B,D,F}}. We observe
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that the optimal solution {A,C,D, F} is now an extension, contrary to the outcome of the
defeat-based stable semantics.

Since both StrAFs are symmetric, the weak stable extensions are equal to the strong
stable extensions (see Proposition 29 for the proof), but it is not the case in general (see
Example 25 for an illustration).

Now we prove that Dung’s argumentation theory is an instance of our StrAF, as it is
shown in the following result, that proves a one to one correspondence between the semantics
of a Dung’s AFs and the strong semantics of StrAFs.

I Definition 20. Given an argumentation framework AF = 〈A,R〉, the StrAF associated
with AF is StrAFAF = 〈A,R,S〉 with S (a) = 1,∀a ∈ A and coval =

∑
.

I Lemma 21. Let AF = 〈A,R〉 be a Dung’s AF, and StrAFAF = 〈A,R,S〉 its associated
StrAF. The set S ⊆ A is conflict-free in AF if and only if it is strongly conflict-free in
StrAFAF .

Lemma 21 is obvious from the definition of strong conflict-freeness.

I Lemma 22. Let AF = 〈A,R〉 be a Dung’s AF, and StrAFAF = 〈A,R,S〉 its associated
StrAF. The set S ⊆ A defends the argument a ∈ A in AF if and only if S ⊆ A defends the
argument a ∈ A in StrAFAF .

Proof. Let us suppose that S ⊆ A defends the argument a ∈ A in AF . This means that for
each b ∈ A such that (b, a) ∈ R, ∃c ∈ S such that (c, b) ∈ R.

Now, let us consider an accrual κ1 ⊆ A such that κ1 � a. As established previously,
∀b ∈ κ1, ∃c ∈ S such that (c, b) ∈ R, i.e. ∃κ2 = {c} ⊆ S such that κ2 attacks b. Since
coval(κ2) = S(c) = 1 = S(b), κ2 � b and thus κ2 � κ1. So S defends the argument a in
StrAFAF .

Now we suppose that S ⊆ A defends the argument a ∈ A in StrAFAF , i.e. for all accruals
κ1 that defeat a, ∃κ2 ⊆ S such that κ2 � κ1. Since all arguments strengths are equal to
1, every argument b ∈ A attacking a corresponds to an accrual κ1 = {b} defeating a. So
∃κ2 ⊆ S such that κ2 �κ1 = {b}, and thus ∃c ∈ κ2 ⊆ S such that (c, b) ∈ R. So we conclude
that S defends the argument a in AF . J

I Proposition 23. (Dung Compatibility) Let AF = 〈A,R〉 be a Dung’s AF, and StrAFAF =
〈A,R,S〉, with coval =

∑
, its associated StrAF. For σ ∈ {cf, ad,pr, st}, σ(AF ) = σS(StrAFAF ).

Proof. The proof follows from Definition 17, Lemma 21 and Lemma 22. J

This result holds for any semantics based on conflict-freeness and defence, including those
which are out of the scope of this paper. From the above, and the observation that for a
StrAF associated with a Dung’s theory AF , the notions of strong and weak conflict-freeness
coincide, we easily obtain the following corollary.

I Corollary 24. Let AF be a Dung’s AF, and StrAFAF its associated StrAF. For σ ∈
{cf, ad,pr, st}, σ(AF ) = σW (StrAFAF).

Proposition 23 and Corollary 24 are major tools for providing hardness results in the
complexity study of StrAFs, in the next Section.



J. Rossit et al. 13

4 Complexity and Algorithms

This section discusses the complexity of various reasoning problems for StrAFs as well as
algorithms for solving them. In the rest of the paper, we assume that coval is tractable, i.e.
it can be computed in polynomial time. Usual aggregation operators (like

∑
, Π or max)

are tractable. We suppose that the reader is familiar with the basic notions of complexity
theory; for more details about this topic, we refer the reader to e.g. [6].

4.1 Complexity of Acyclic Frameworks
A StrAF = 〈A,R,S〉 is acyclic if the relation R is acyclic. Recall that Dung’s acyclic
argumentation frameworks have exactly one stable extension. The following example shows
that this is not the case for StrAFs under the strong stable semantics.

I Example 25. Let StrAF = 〈A,R,S〉 be a StrAF with A = {a, b}, R = {(a, b)}, S(a) = 1,
S(b) = 2. For coval =

∑
, we have stΣ

S (StrAF) = ∅, whereas stΣ
W (StrAF) = {{a, b}}.

In fact, we prove the existence of a weak stable extension for every acyclic StrAF, by
providing Algorithm 1. Given StrAF = 〈A,R,S〉 and an argument a ∈ A, the set of attackers
of a, denoted by Γ−StrAF(a), is defined as Γ−StrAF(a) = {b | b ∈ A and (b, a) ∈ R}. When
StrAF is clear from the context we write simply Γ−(a).

Algorithm 1 Algorithm compute-acyclic-extension(〈A,R,S〉, coval)

1 E = ∅;
2 while A 6= ∅ do
3 E′ = {a | a ∈ A such that Γ−(a) = ∅};
4 E = E ∪ E′;
5 A′ = {a | a ∈ A, and ∃κ ⊆ E such that κ�coval a};
6 A = A \ (E ∪A′);
7 end
8 return E;

I Proposition 26. (Termination and Correctness for Acyclic StrAFs) Algorithm 1 compute-
acyclic-extension always terminates. The set E returned by the algorithm is the unique weak
stable extension of the input acyclic StrAF = 〈A,R,S〉 with respect to coval.

Proof. Let us first prove that Algorithm 1 always terminates. The only modifications of the
argumentation graph are removals of arguments (step 6). One can remark that removing
nodes from an acyclic graph leads to another acyclic graph. Thus, at each iteration of the
loop, there is at least one non-attacked argument a that is added to E′ (step 3). This implies
that each iteration of the loop strictly decreases the size of A. After at most |A| iterations,
A is guaranteed to be empty, so the algorithm terminates.

Now let us prove that the algorithm is correct. Let E be the set returned by Algorithm 1
compute-acyclic-extension. Let us now suppose that E is not a weak stable extension of the
input acyclic StrAF = 〈A,R,S〉 with respect to coval. According to Definition 17, we can
have two cases.

Case 1 E is not weakly conflict free. That means ∃κ ⊆ E an accrual and ∃b ∈ E such that
κ � b. This is impossible: since b is defeated, it implies that Γ−(b) 6= ∅, thus b is not
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added to the sets E′ and E (steps 3 and 4). Then, steps 5 and 6 exclude from A the
argument b, so it will never be added to E′ at the following iterations of the while loop.

Case 2 There exists an argument a ∈ A \ E such that ∀κ ⊆ E, κ 7 a. However, by
construction, such an argument a is never added to A′ (step 5), so it is not removed from
A at step 6. At some point, all its attackers must have been removed, so Γ−(a) = ∅; this
implies that a is added to E at some iteration of the loop (steps 3 and 4), which is a
contradiction since by assumption a ∈ A \ E.

Thus E is a weak stable extension.

Now let us prove that E is the unique weak stable extension. Let us suppose that
∃E′ ∈ stcoval

W (StrAF) such that E 6= E′. We show iteratively that such an extension E′

contains exactly the same arguments than E, which is contradictory.
First, we observe that the non-empty set U of arguments that are unattacked in StrAF

is such that U ⊆ E and U ⊆ E′. Indeed, these are the arguments that are added to E at the
first iteration of the loop, step 3 and 4 of Algorithm 1. Since every unattacked argument a
cannot be defeated by an accrual, it has to belong to every weak stable extension and in
particular to E′. At this step, we observe that the set of arguments D that are defeated by
any accrual κ ⊆ U cannot belong to E′, since these arguments are defeated by some accrual
in E′. These arguments are exactly the ones that are put aside from E by step 5 and 6 of
Algorithm 1.

Since StrAF is assumed to be acyclic, arguments that are defeated by some accrual in
D cannot be defeated by some accruals that are not in D, and are then straightforwardly
defended by some accrual in U . Thereby these arguments must belong to E′ since they
are defended by E′ and moreover cannot be defeated by any defended accrual. We also
observe that this arguments are the one added to E at steps 3 and 4 of the next iteration of
Algorithm 1 following steps 5 and 6 which has put aside arguments of D.

This process then repeats iteratively until it terminates since A is finite and StrAF
is acyclic. One can observe that, at each step of this process, arguments added to E by
Algorithm 1 must be in E′, and conversely arguments set aside by Algorithm 1 cannot belong
to E′. We thus finally obtain that E = E′ which contradicts our assumption, and so E is
the unique weak stable extension. J

Algorithm 1 is a polynomial time procedure when the set A′ can be computed in polynomial
time.

I Proposition 27. (Extension Computation for Acyclic StrAFs) Let StrAF = 〈A,R,S〉 be
an acyclic StrAF and coval an aggregation operator. Computing a weak stable extension of
StrAF is polynomial.

Proof. As it is explained in the proof of Proposition 26, we know that the number of iterations
of the while loop is at most |A|. Determining the set E′ of non-attacked arguments is doable
in polynomial time, as well as the standard set operations at steps 4 and 6. Since coval is
tractable, the computation of the set A′ is also polynomial. This concludes the proof. J

We notice that Algorithm 1 corresponds to the well-known algorithm for computing the
grounded extension in Dung’s theory. This is not surprising, since the stable semantics
coincide with the single-status grounded semantics for acyclic graphs (as well as any reasonable
semantics).

Although we know that strong stable extensions may not exist for acyclic graphs, we
show that deciding whether they exist or not is tractable.
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I Proposition 28. (Extension Existence for Acyclic StrAFs) Let StrAF = 〈A,R,S〉 be an
acyclic StrAF and coval an aggregation operator. Deciding whether StrAF has a strong stable
extension is polynomial.

Proof. We know that if StrAF admits a strong stable extension, then it is also a weak stable
extension. Since StrAF is acyclic, it admits a single weak stable extension, which is the set
polynomially computed by Algorithm 1. This set E (by definition of weak stable extensions)
defeats every argument a ∈ A\E. For deciding whether E is also the strong stable extension,
we just have to check if it is strongly conflict-free; that can be done in polynomial time. J

Remark: Since there is a single weak stable extension, and computing this extension
is polynomial (Proposition 27), both skeptical and credulous acceptance coincide for weak
stable semantics, and are polynomial reasoning tasks. Similarly, Proposition 28 shows that,
if a strong stable extension exists for an acyclic StrAF then it can be polynomially computed
by Algorithm 1, and thus credulous (and skeptical) acceptance are polynomial as well.

4.2 Complexity of Symmetric Frameworks

Now we consider the case of symmetric StrAFs, i.e. frameworks for which (a, b) ∈ R if and
only if (b, a) ∈ R. This corresponds to situations like the one depicted in Example 5 with
John’s gardens problem. We prove here that, in spite of the specific structure of this subclass
of StrAFs, reasoning is at the first level of the polynomial hierarchy (i.e. the same complexity
as general StrAFs, as shown in Section 4.3).

First, we prove that strong and weak semantics coincide for symmetric StrAFs.

I Proposition 29. (Weak/Strong Coincidence) Let StrAF = 〈A,R,S〉 be a symmetric StrAF
and coval an aggregation operator. cfcoval

S (StrAF) = cfcoval
W (StrAF).

Proof. We already know that cfcoval
S (StrAF) ⊆ cfcoval

W (StrAF) (straightforward from the
definition of strong and weak conflict-freeness). Now, let us prove the opposite inclusion, using
reductio ad absurdum. We suppose that ∃E ∈ cfcoval

W (StrAF) such that E 6∈ cfcoval
S (StrAF).

This means that ∃a, b ∈ E such that (a, b) ∈ R. Since StrAF is symmetric, we know
that (b, a) ∈ R also holds. Now, if S(a) ≥ S(b) then {a} �coval b, otherwise S(b) > S(a)
and then {b} �coval a. Whatever the situation, E is not weakly conflict-free, which is
a contradiction. So we deduce that cfcoval

W (StrAF) ⊆ cfcoval
S (StrAF), and we conclude

cfcoval
S (StrAF) = cfcoval

W (StrAF). J

Proposition 29 implies that adcoval
S (StrAF) = adcoval

W (StrAF), prcoval
S (StrAF) =

prcoval
W (StrAF) and stcoval

S (StrAF) = stcoval
W (StrAF), for any symmetric StrAF and any

coval.
Now we study credulous and skeptical reasoning; we show that deciding whether an

argument belongs to some (respectively each) strong (or weak) extension is NP-complete
(respectively coNP-complete).

I Proposition 30. (Argument Acceptance for Symmetric StrAFs) Let StrAF = 〈A,R,S〉 be
a symmetric StrAF and coval an aggregation function. Given a ∈ A and X ∈ {S,W},

deciding whether ∃E ∈ stX(StrAF) such that a ∈ E is NP-complete.
deciding whether ∀E ∈ stX(StrAF), a ∈ E is coNP-complete.
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Proof. It has been proven [38, 39] that credulous (respectively skeptical) acceptance is
NP-complete (respectively coNP-complete) for symmetric argumentation frameworks. From
Proposition 23 and Corollary 24, we know that any argumentation framework can be
associated with a StrAF that has exactly the same set of (weak or strong) extensions. So, for
a symmetric AF = 〈A,R〉 and a ∈ A, we can define a symmetric StrAF such that its (weak
or strong) stable extensions correspond to the stable extensions of AF . So, a is credulously
(respectively skeptically) accepted in AF with respect to the stable semantics if and only if a
is credulously (respectively skeptically) accepted in StrAF with respect to (weak or strong)
stable semantics. We can conclude that credulous (respectively skeptical) acceptance for
StrAFs is NP-hard (respectively coNP-hard).

For NP-membership and coNP-membership, the proof is the same as for Proposition 35
in the case of general StrAFs. J

I Proposition 31. (Extension Existence for Symmetric StrAFs) Given StrAF = 〈A,R,S〉
a symmetric StrAF and coval an aggregation function, checking whether stcoval

X (StrAF) 6= ∅
is NP-complete, with X ∈ {S,W}.

Proof. The NP-membership can be deduced from the fact the extension existence belongs
to NP in the case of general StrAFs (see Proposition 34).

For proving NP-hardness, we use a reduction similar to the one proposed in [38]. Let us
consider any AF = 〈A,R〉. We define a symmetric StrAF such that its (weak or strong) stable
extensions exactly coincide with the stable extensions of AF . Formally, StrAF = 〈A,R,S〉
with:
A = A ∪A′, where A′ = {x′ | x ∈ A}, i.e. for any argument x ∈ A, we create x′ a copy
of x;
R = R1 ∪R2 ∪R3 ∪R4, where
R1 = {(a, b), (b, a) | (a, b) ∈ R}, i.e. all the attacks from AF are made symmetric;
R2 = {(a, a′), (a′, a) | a ∈ A}, i.e. each argument from AF attacks (and is attacked
by) its copy;
R3 = {(a, b′), (b′, a) | (a, b) ∈ R}, i.e. if a attacks b in AF , then a attacks (and is
attacked by) the copy of b;
R4 = {(a′, a′) | a′ ∈ A′}, i.e. each copy is a self-attacking argument.

if ∃b ∈ A such that (a, b) ∈ R, then S(a) = M , with M an arbitrary large number
(M ≥ |A|), otherwise S(a) = 1.

Figure 5 illustrates the reduction from an AF to its corresponding symmetric StrAF.

A B C

A

6

B

6

C

1

A′1 B′1 C′1

Figure 5 An example of our reduction from AF to StrAF

Let us prove that st(AF ) = stS(StrAF). We start by the proof that st(AF ) ⊆ stS(StrAF).
Let E ∈ st(AF ) be a stable extension of AF . By definition, E is conflict-free in AF .
Moreover, by the definition of StrAF , ∀a, b ∈ A, if (a, b) 6∈ R and (b, a) 6∈ R, then (a, b) 6∈ R
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and (b, a) 6∈ R: the construction of the StrAF makes the attacks in AF symmetrical, but no
new conflicts are created. So E is strongly conflict-free in StrAF .

Now, we need to prove that each argument a ∈ A \ E is defeated by an accrual κ ⊆ E.
Let us consider such an argument a ∈ A \ E.

If a ∈ A \ E (i.e. a is an argument that belongs to AF , not a copy), then (since E is
a stable extension of AF ) ∃b ∈ E such that (b, a) ∈ R. This implies that S(b) = M ,
so whatever the strength of a, S(b) ≥ S(a). This means that {b} � a, where {b} is an
accrual included in E.
Otherwise, a ∈ A′. This means that a = x′, for some x ∈ A. Moreover, by definition of
StrAF , S(a) = 1.

If x ∈ E, since (x, x′) ∈ R, there is an accrual {x} ⊆ E such that {x}�x′, i.e. {x}�a.
If x 6∈ E, ∃y ∈ E such that (y, x) ∈ R . This implies that (y, x′) ∈ R, thus {y}� x′,
i.e. {y}� a.

We can conclude that E ∈ stS(StrAF), so st(AF ) ⊆ stS(StrAF).

Now, we prove that stS(StrAF) ⊆ st(AF ). Let E be a strong stable extension of StrAF .
First, we notice that there can be no argument a′ ∈ A′ in the extension: each a′ ∈ A′ attacks
itself, so if a′ ∈ E, then E is not strongly conflict-free, and thus E cannot be a strong stable
extension. So E ⊆ A.

Since E is strongly conflict-free in StrAF , we can prove that E is conflict-free in AF .
Indeed, the construction of StrAF from AF only adds attacks (by making the conflicts
symmetrical). So, if there is no attack between two arguments a, b ∈ A in StrAF , it means
that there is no attack between them in AF either.

We still have to prove that E attacks each argument b ∈ A \E in AF . Using reductio ad
absurdum, we suppose that ∃b ∈ A \ E such that b is not attacked by E in AF , i.e. ∀a ∈ E,
(a, b) 6∈ R. This implies (by definition of StrAF) that, ∀a ∈ E, (a, b′) 6∈ R. So @κ ⊆ E such
that κ� b′: the copy b′ of b is not attacked, and thus not defeated by E is StrAF . So E is
not a strong stable extension of StrAF : this is a contradiction.

We can now conclude that E ∈ st(AF ), so stS(StrAF) ⊆ st(AF ).

We have proven that st(AF ) = stS(StrAF), which means that st(AF ) 6= ∅ if and only if
stS(StrAF) 6= ∅. And it is known that verifying whether an argumentation framework has
at least one stable extension is a NP-hard problem [39]. So we can conclude that verifying
whether a symmetric StrAF has at least one strong stable extension is a NP-hard problem.
The result also holds for weak stable semantics, since weak and strong semantics coincide for
symmetric StrAFs. J

While verifying the existence of at least one (strong or weak) stable extension is generally
hard, even for symmetric StrAFs, we show that this problem is trivial in the case of irreflexive
symmetric StrAFs, i.e. symmetric StrAFs where no self-attack appear. Indeed, Algorithm 2 is
a simple (non-deterministic) polynomial time procedure that returns a strong stable extension
of the irreflexive symmetric StrAF given as input. This algorithm proves the existence of
strong, and therefore weak as well, stable extensions for every irreflexive symmetric StrAF.

I Proposition 32. (Termination and Correctness for Symmetric StrAFs) Algorithm 2
compute-symmetric-extension always terminates. Any set E returned by the algorithm is
a strong (and weak) stable extension of the irreflexive symmetric StrAF = 〈A,R,S〉 with
respect to coval.
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Proof. Let us first prove that the algorithm always terminates. For any StrAF = 〈A,R,S〉,
since ∀a ∈ A,S(a) ∈ N, there is at least one argument such that S(a) is maximal. Exactly
one of these arguments is selected at step 3, added to E, and removed from A at step 5.
This means that every iteration of the while loop strictly decreases the size of A, thus the
algorithm terminates in at most |A| iterations.

Now let us prove that the algorithm is correct. Let E be the set returned by some
execution of Algorithm 2 compute-symmetric-extension. Let us now suppose that E is not a
strong stable extension of the input symmetric StrAF = 〈A,R,S〉. According to Definition 17,
we can have two cases.
Case 1 E is not strongly conflict free. That means ∃a, b ∈ E such that (a, b) ∈ R. This is

impossible: without loss of generality, let us suppose that a has been added to E before
b. Then, b is removed from A at step 5, and it will never be added to E at the following
iterations of the loop. Since the graph is symmetric, (a, b) ∈ R implies (b, a) ∈ R, so we
observe the same situation if b is added in E before a.

Case 2 There exists an argument b ∈ A \ E that is not defeated by an accrual in E, i.e.
∀κ ⊆ E, κ 7 b. There are again several possible situations.
1. b is not attacked by E, i.e. ∀a ∈ E, (a, b) 6∈ R. Then b is never removed from A

at step 5, this implies that b will be added to E. This is a contradiction with the
assumption that b ∈ A \ E.

2. There are attacks from some arguments a1, . . . , ak ∈ E towards b, such that
coval(κ) 6≥ S(b), with κ = {a1, . . . , ak}. If ∃ai ∈ κ such that S(ai) ≥ S(b), then
κ′ = {ai} is an accrual that defeats b, that is a contradiction with the assumption.
So we can ensure that ∀ai ∈ κ, S(ai) < S(b). In such a situation, b should have been
selected and added to E before any argument ai. This is again a contradiction with
the assumption that b ∈ A \ E.

Thus E is a strong stable extension, and therefore a weak stable extension. J

Algorithm 2 Algorithm compute-symmetric-extension(〈A,R,S〉, coval)

1 E = ∅;
2 while A 6= ∅ do
3 Select a ∈ A s.t. @a′ ∈ A with S(a′) > S(a);
4 E = E ∪ {a};
5 A = A \ ({a} ∪ {b | b ∈ A, (a, b) ∈ R});
6 end
7 return E;

4.3 General Complexity
Now we investigate the complexity of reasoning with general StrAFs. We first prove that
verifying whether a set of arguments is a (strong or weak) stable extension is polynomial.

I Proposition 33. (Extension Verification) Let StrAF = 〈A,R,S〉 be a StrAF and coval an
aggregation function. For E ⊆ A, checking whether E ∈ stcoval

X (StrAF), with X ∈ {S,W}, is
polynomial.

Proof. For E ⊆ A, we have to check whether E is strongly (or weakly) conflict-free.
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For the case of strong conflict-freeness, we have to check that for any two a, b ∈ E, it
holds that (a, b) 6∈ R. This is polynomial and corresponds to checking conflict-freeness in
Dung’s framework.

Weak conflict-freeness is verified by first computing the set Γ−(a) = {b | b ∈ E such that
(b, a) ∈ R} for each a ∈ E, and then checking that it is not the case that coval(Γ−(a)) ≥ S(a).
Since coval is assumed to satisfy the Accrual property (see Definition 11), coval(Γ−(a)) < S(a)
implies that for any accrual κ ⊆ E that attacks a, coval(κ) ≤ coval(Γ−(a)) < S(a), so κ 7 a.
All the above tests can be carried out in polynomial time.

Finally, for both weak and strong semantics the following check is needed. For every
a 6∈ E, the set Γ−(a) = {b | b ∈ E such that (b, a) ∈ R} is computed. Then for each such
a it is verified that coval(Γ−(a)) ≥ S(a). Again, these tests are computable in polynomial
time. J

Computing stable extensions is a central problem in argumentation. Similar to the case
of Dung’s theories, this problem is intractable for StrAFs. However, its complexity does not
increase for StrAFs.

I Proposition 34. (Extension Existence) Given StrAF = 〈A,R,S〉 a StrAF and coval an
aggregation function, checking whether stcoval

X (StrAF) 6= ∅ is NP-complete, with X ∈ {S,W}.

Proof. It is known that verifying whether a Dung’s AF has at least one stable extension
is NP-complete [39]. From Proposition 23 and Corollary 24, we know that any AF can be
associated with a StrAF that has exactly the same set of (strong or weak) extensions. We
can deduce that checking the existence of (strong or weak) stable extensions of a StrAF is at
least as hard as checking the existence of stable extensions of an AF. So we conclude that it
is NP-hard.

NP-membership follows from the polynomial complexity of Verification (see Proposi-
tion 33). J

Finally, we show that, likewise Dung’s AFs, credulous and skeptical acceptance are at the
first level of the polynomial hierarchy.

I Proposition 35. (Argument Acceptance) Let StrAF = 〈A,R,S〉 be a StrAF and coval an
aggregation function. Given a ∈ A,

deciding whether ∃E ∈ stX(StrAF) such that a ∈ E is NP-complete.
deciding whether ∀E ∈ stX(StrAF), a ∈ E is coNP-complete.

Proof. Since credulous (respectively skeptical) argument acceptance is NP-hard (respectively
coNP-hard) for the specific case of symmetric StrAFs (see Proposition 30), it is also NP-hard
(respectively coNP-hard) in the general case.

For NP-membership of credulous acceptance, let E ⊆ A be a set of arguments such
that a ∈ E. Verifying whether E is a strong (or weak) stable extension is polynomial
(Proposition 33); the conclusion follows.

For coNP-membership of skeptical acceptance, let E ⊆ A be a set of arguments such
that a 6∈ E. Again, verifying whether E is a strong (or weak) stable extension is polynomial;
this concludes the proof. J

Computing the stable extensions of a StrAF is a challenging problem even when the
aggregation function is coval =

∑
. The rest of this section presents an algorithm that

finds the stable extensions of StrAF = 〈A,R,S〉, with
∑

as the aggregation function, by
translating their computation into a pseudo-Boolean constraint satisfaction problem.
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A pseudo-Boolean constraint is an inequality of the form
∑

i wivi ≥ k, where wi and k
are positive integers, and vi is a variable that may assume the values 0 and 1. Nowadays,
there are several systems that can solve pseudo-Boolean constraint satisfaction problems (e.g.
SAT4J [47], OpenWBO [52], RoundingSat [41]), many of which draw on the power of efficient
SAT solving techniques.

4.3.0.1 Weak Semantics

We start with weak stable semantics. Given StrAF = 〈A,R,S〉 and coval =
∑

, we associate
a pseudo-Boolean constraint satisfaction problem CSW (StrAF) = (X,C), defined as follows:

with each argument ai ∈ A we associate a Boolean variable xi ∈ X;
the set of constraints C is as follows:

(1) For each a ∈ A with Γ−(a) = {a1, a2, . . . , an}, add the constraint S(a1)×x1 +S(a2)×
x2 + · · ·+S(an)×xn < S(a)×x+(1−x)×Ma, where x is the variable that corresponds
to a, and Ma an integer that is explained below.

(2) For each a ∈ A with Γ−(a) = {a1, a2, . . . , an}, add the constraint S(a1)×x1 +S(a2)×
x2 + · · ·+ S(an)× xn ≥ (1− x)× S(a), where x is the variable that corresponds to a.

Intuitively, xi is true means that the corresponding argument ai belongs to an extension.
Each solution of the problem corresponds then to one extension of the StrAF.

The value Ma that is associated with an argument a ∈ A in constraint (1) is an integer
such that Ma >

∑
ai∈Γ−(a) S(ai). The purpose that Ma serves is to “neutralize” constraint

(1) when the variable x receives the value 0. Indeed, depending on the value of x, constraint
(1) can be understood as follows.

(1.1) if x = 0, the constraint becomes
∑

ai∈Γ−(a) S(ai)× xi < Ma, which is satisfied regardless
of the values assigned to the variables xi, since

∑
ai∈Γ−(a) S(ai)× xi ≤

∑
ai∈Γ−(a) S(ai)

and by construction
∑

ai∈Γ−(a) S(ai) < Ma. Therefore, in this case constraint (1) is
inactive.

(1.2) if x = 1, the constraint becomes
∑

ai∈Γ−(a) S(ai)×xi < S(a), requiring that coval(Γ−(a)) <
S(a).

In other words, constraint (1) means that we can accept a only if it is stronger than its
accepted attackers; roughly speaking, these attackers form an accrual that attacks a but
cannot defeat it even collectively.

Constraint (2) can be understood as follows:
(2.1) if x = 0, the constraint becomes S(a1)× x1 + S(a2)× x2 + · · ·+ S(an)× xn ≥ S(a), i.e.

coval(Γ−(a)) ≥ S(a).
(2.2) if x = 1, the constraint becomes S(a1)× x1 + S(a2)× x2 + · · ·+ S(an)× xn ≥ 0, that is

trivially satisfied; the constraint is inactive in this case.
Intuitively, this constraint can be interpreted as the fact that we can reject a only if its
accepted attackers can join their respective strength to collectively overtake the strength of
a. Roughly speaking, this means that there exists an accrual that defeats a.

Note that, when a has no attacker, constraint (2) becomes 0 ≥ (1− x)× S(a), that can
be rewritten into x ≥ 1. This means that non-attacked arguments must be accepted.

The next proposition shows a direct correspondence between weak stable extensions of
StrAF and the solutions of the problem CSW (StrAF).

I Definition 36. Given a set of arguments E ⊆ A, the Boolean assignment ωE is defined,
∀xi ∈ X, by ωE(xi) = 1 if and only if ai ∈ E.
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I Proposition 37. (Computation for Weak Stable Semantics) A set E ⊆ A is a weak stable
extension of StrAF = 〈A,R,S〉 with respect to

∑
if and only if the assignment ωE is a

solution for CSW (StrAF).

I Example 38. Consider StrAFweak = 〈A,R,S〉 described at Figure 6a. The numerical
values close to the nodes represent the strength of arguments i.e. the function S(·). We
observe that this StrAF does not admit a strong stable extension, but weak stable extensions
can be computed as follows.
If we setMa to 5 in all the constraints for simplicity, we obtain the following set of constraints:

3× x3 < 1× x1 + (1− x1)× 5
1× x1 < 2× x2 + (1− x2)× 5
1× x1 + 2× x2 < 3× x3 + (1− x3)× 5
2× x2 < 2× x4 + (1− x4)× 5
3× x3 ≥ (1− x1)× 1
1× x1 ≥ (1− x2)× 2
1× x1 + 2× x2 ≥ (1− x3)× 3
2× x2+ ≥ (1− x4)× 2

The above set of constraints has the solutions S1 = {x1 = 1, x2 = 1, x3 = 0, x4 = 0}, and S2 =
{x1 = 0, x2 = 1, x3 = 1, x4 = 0} that correspond to stΣ

W (StrAFweak) = {{a1, a2}, {a2, a3}}.

a1 1

a3

3

a2

2

a4

2

(a) StrAFweak

a1

1

a4

1

a2

2

a3

1

(b) StrAFstrong

Figure 6 Two Examples of StrAFs

4.3.0.2 Strong Semantics

For strong stable semantics, we use the encoding for weak stable semantics as a starting
point. We only need to add a constraint for enforcing the strong conflict-freeness. Given
StrAF = 〈A,R,S〉 and coval =

∑
, we associate a pseudo-boolean constraint satisfaction

problem CSS(StrAF) = (X,C) as follows:
with each argument ai ∈ A we associate a Boolean variable xi ∈ X;
the set of constraints C is as follows:

(1) For each a ∈ A with Γ−(a) = {a1, a2, . . . , an}, add the constraint S(a1)×x1 +S(a2)×
x2 + · · ·+S(an)×xn < S(a)×x+(1−x)×Ma, where x is the variable that corresponds
to a, and Ma an integer that is explained previously.

(2) For each a ∈ A with Γ−(a) = {a1, a2, . . . , an}, add the constraint S(a1)×x1 +S(a2)×
x2 + · · ·+ S(an)× xn ≥ (1− x)× S(a), where x is the variable that corresponds to a.

(3) For each pair of arguments ai, aj ∈ A such that (ai, aj) ∈ R, add the constraint
xi + xj ≤ 1.
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Constraints (1) and (2) have already be explained. Constraint (3) means that two
conflicting arguments cannot be jointly accepted: this enforces (strong) conflict-freeness.

The next proposition shows that there is a direct correspondence between strong stable
extensions of StrAF and the solutions of the problem CSS(StrAF).

I Proposition 39. (Computation for Strong Stable Semantics) A set E ⊆ A is strong stable
extension of StrAF = 〈A,R,S〉 with respect to

∑
if and only if the assignment ωE is a

solution of CSS(StrAF).

I Example 40. Consider StrAFstrong = 〈A,R,S〉 described at Figure 6b. We observe that
if we use the classical defeat-based semantics, neither a1 nor a3 can defeat a2, while our
semantics sensitive to accruals give a different result. The computation of strong stable
extensions is made as follows. We translate the StrAF into a set of pseudo-boolean constraints.

0 < 1× x1 + (1− x1)× 5 0 ≥ (1− x1)× 1 x1 + x2 ≤ 1
1× x1 + 1× x3 < 2× x2 + (1− x2)× 5 1× x1 + 1× x3 ≥ (1− x2)× 2 x3 + x2 ≤ 1
0 < 1× x3 + (1− x3)× 5 0 ≥ (1− x3)× 1 x2 + x4 ≤ 1
2× x2 < 1× x4 + (1− x4)× 5 2× x2 ≥ (1− x4)× 1

The three columns correspond respectively to constraints (1), (2) and (3). The only solution
of this set of constraints is S = {x1 = x3 = x4 = 1, x2 = 0}, that corresponds to the unique
strong stable extension E = {a1, a3, a4}.

We notice that StrAFweak from Example 38 does not have any strong stable extension.
Indeed, none of the solutions S1 and S2 that we exhibited previously satisfies the strong
conflict-freeness constraint.

5 Related Work

Several approaches have been proposed in the AI literature to model the accrual of arguments.
Especially, in structured argumentation setting, [62, 49, 50, 44, 63] deal with accruals by
adding a new argument that represents the accrual; these works consider that the arguments
members of an accrual should not be taken into consideration on their own. On the other
hand, [66] defines a formalism in which accruals are explicitly given, since conflicts are defined
in terms of sets of arguments attacking other (sets of) arguments. The notions introduced in
these works strongly rely on the internal structure of the arguments, whereas in abstract
argumentation, which is the subject matter of our study, this structure is unknown.

Collective attacks have also been studied in abstract argumentation. In [57, 42] the authors
proposed a generalization of Dung’s abstract framework by presenting an abstract attack
relation between sets of arguments and by extending the associated semantics. Similarly, in
[23], n-ary conflicts are defined between sets of arguments that cannot be jointly accepted,
while no explicit conflicts exist between these arguments. Besides, [19] defines collective
argumentation frameworks where sets of arguments attacks sets of arguments. In [43, 67],
combined attacks (i.e. several arguments attacking a same target) are modelled through
notions of joint attack or accrual patterns. In these works there is no notion of arguments
strength (and thus, defeat relation) and then compensation as we do here.

In all the works cited previously (in both fields of structured and abstract argumentation)
accruals of arguments need to be explicitly elicited as an input of the reasoning process. In
other words, each existing accruals must be clearly identified before the reasoning step of the
process, and all combinations of arguments must be taken into account when a new argument
is provided to the system. On the contrary, in our work accruals appear as an output of
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the system, and are computed only from the attack relation and the arguments strength.
Moreover, since in our work the elicitation of all accruals and preferences between sets of
arguments is not necessary, our framework is more modular. Indeed, when new arguments
are added to the framework or agents preferences are updated, the generation of new accruals
or the loss of old ones is automatically handled by the behaviour of our semantics.

Another framework representing synergies of arguments is proposed in [45]. This frame-
work proposes an extension of the value-based argumentation framework [10] by defining
a defeat relation with varied strength. The strength of defeat of a subset A of arguments
over another subset B of arguments depends then on the values promoted by A and B.
This framework is also different to ours as in our framework the strength is associated with
arguments and the collective strength of an accrual is computed through an aggregation
operator that aggregates according to different ways the strengths of the individual arguments
forming the accrual. Then this collective strength is used in the definition of a collective
defeat relation that is used between subsets of arguments.

Abstract Dialectical Frameworks (ADFs) [21] associate to each abstract node x (called
statement) an acceptance formula φx built on variables that correspond to the parents of the
node x in the graph. Such an acceptance formula can model collective attacks, e.g. a and b
collectively attack c is modelled by φc = ¬a ∨ ¬b: if both a and b are accepted, then c is
rejected (because φc is false), otherwise c is accepted. However, ADFs cannot represent the
notion of compensation between weak and strong arguments as we do. Moreover, the problem
of explicit elicitation of collective defeats is the same as previously described. Although [22]
extends ADFs by adding a notion of weight, it does not at all correspond to the strength of
the arguments, but rather to the computation of a degree of acceptance for statements (in
the spirit of gradual semantics [24]).

The idea of “collective support” between arguments is also explored in [26], where
arguments participating in a coalition support (or help) each other against attacks from
other arguments. However, this idea of an accrual of arguments with other arguments,
especially when related to the notion of support, is quite different from our idea of “accrual”
and “collective attack”. In our work, we consider that an accrual of arguments defends a
common position on a matter which is defended individually by each of the participating
arguments (by expressing a different point of view). The motivation of an accrual is not
to create a mutual support among the participating arguments. We consider that this is
rather closer to the notion of “extension”. In our work, arguments form an accrual in order
to defeat a common adversary that none of them can defeat alone. Thus, the accrual forms
a compound unified attack incorporating different points of view (or dimensions) against a
single argument or a set of arguments defending a conflicting position.

We have mentioned previously that several works attach a weight to arguments (see e.g.
[48, 9, 2, 8, 55, 61]). The meaning of these weights can be the votes of users, some notion
of trust, or the certainty about the arguments premises. However, all these works strongly
differ from ours since they intend to define a ranking or an acceptance degree of arguments.
They focus on the individual acceptance of arguments, while the extension-based semantics
that we define in this paper correspond to a notion of joint acceptance. Moreover, these
works do not study collective defeat and accrual of arguments.

Recently, in [37, 31, 29] the authors investigated aggregation of weights in weighted
argumentation systems. However, in this framework weights are associated with attack
relations and are not involved in the definition of a defeat relation applied for accruals like in
our framework. Moreover, none of the above works has investigated in depth the theoretical
and computational properties of the proposed approaches for compound attacks. Similarly to
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both papers cited above, [51] defines attacks of different strength. The paper generalizes the
notion of defense by setting conditions about the relative strength of attackers and defenders
in order to generalize Dung’s semantics. The concepts of collective attacks or accrual of
arguments are not studied there. Finally, [16] defines a notion of collective attack by the
aggregation of weights associated with these attacks. In this framework, if both a and b

attack an argument c, respectively with strength m and n, then the strength of the collective
attack from {a, b} to c is the result of aggregating m and n (e.g. m+ n). Nevertheless, this
notion of collective attack is there used to relax the notion of defence, and this work does
not address the notion of individual/collective attack/defeat like our approach.

6 Conclusion and Future Work

In this paper, we have proposed an intuitive framework for representing strength of arguments
called Strength-based Argumentation Framework. We use the numerical strength of argu-
ments to define extension-based semantics based on a defeat relation, that is the combination
of the initial attacks between arguments and the comparison of their respective strengths. We
have shown how quantitative strengths can be aggregated when several arguments attack a
same target, making an accrual of arguments. The definition of collective defeat has allowed
us to define new semantics that lead to interesting extensions that cannot be obtained when
the usual Dung’s AFs or individual defeat are used.

We have established the complexity of several reasoning problems for special cases (acyclic
and symmetric graphs) as well as general StrAFs. Surprisingly, we notice that, while our
framework can model situations that are not captured by Dung’s AFs without a blow up of
the framework size, the complexity of reasoning does not increase. Table 2 summarizes our
results for (strong and weak) stable semantics. P stands for polynomial, while X-c means
X-complete where X is either NP or coNP. We say that a problem is trivial when the
answer is straightforwardly "yes". We recall that all these results hold under the assumption
that coval can be computed in polynomial time.

Acyclic Symmetric General
Strong Weak Strong Weak Strong Weak

Verification P P P P P P
Existence P Trivial NP-c NP-c NP-c NP-c
Credulous P P NP-c NP-c NP-c NP-c
Skeptical P P coNP-c coNP-c coNP-c coNP-c

Table 2 Summary of complexity results for (strong and weak) stable semantics

Our complexity results only concern the (strong and weak) stable semantics. For the
case of weak semantics, they remind the complexity results for AFs with collective attacks
[40]. We plan to deepen this investigation and consider other semantics as well, especially for
the strong versions since the weak versions can be deduced from [40]. Moreover, regarding
symmetric StrAFs, we have proven that extension existence is a trivial problem if we only
consider irreflexive attack relations, i.e. no self-attacking arguments belong to the StrAF. It
is known that reasoning with irreflexive symmetric AFs is polynomial [28]. We will investigate
this question for irreflexive StrAFs, and determine whether self-attacks are the source of
NP (or coNP) hardness for symmetric StrAFs, as they are in the case of symmetric AFs.

Weak extensions make sense for applications where conflicts are expected between pieces
of information, but these pieces of information appear to be not strong enough to actually
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exclude each other. In other words, evaluation of these conflicts does not lead to reject some
of the involved pieces of information which thus can be be accepted together. However, in the
case of logic-based argumentation, the loss of (strong) conflict-freeness may lead to problems
with the inference defined from the argumentation framework if two arguments belong to the
same extension while one of them undercuts the other one. We plan to refine the notion of
weak conflict-freeness according to this idea, similarly to the refinement of Preference-based
AFs [5].

In Section 4.1, we have stated that acyclic StrAFs have exactly one (strong or weak)
stable extension. This is reminiscent to known results for classical AFs [35], or argumentation
frameworks with weighted attacks [17, 18]. These papers prove that (in these frameworks)
the four classical semantics introduced by Dung (namely grounded, complete, preferred and
stable) coincide for well-founded frameworks. The formal definition and study of the relations
between these semantics in our framework is a promising track for future research.

We plan to study the logical properties of our accrual-based semantics with respect to
the properties of coval operators. Different properties may be suited to different applications
scenarios, thus indicating which coval operators to choose depending on the application
domain or the nature of arguments.

As mentioned in Section 3.1, we have focused in this work on situations where arguments
strengths are commensurable from an argument to another. Again, this assumption allows
to directly compare strengths associated with different arguments, and it thus makes sense
to then aggregate them to compute the strength associated with an accrual. However, this
assumption may appear to be too strong for many interesting real-world applications, for
example when weights represent subjective opinions or judgments, or when they are provided
by different sources which do not share the meaning they associate with weights. We will
investigate strategies adapted to applications where such commensurability assumption over
strengths associated with arguments is dropped.

Lastly, frameworks where arguments are built from logical formulas or rules have received a
lot of attention [46, 13, 36]. On the other hands, some logical frameworks allow representation
of weighted pieces of information [58, 34]. A natural question is then the generation of
structured arguments from such weighted logics, and then whether and how such structured
arguments can be combined in accruals.
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